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Avalanches and waves in the Abelian sandpile model
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We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of
waves of toppling events. Priezzhev al. [Phys. Rev. Lett76, 2093 (1996] have recently proposed exact
results for the critical exponents in this model based on the existence of a proposed scaling relation for the
difference in sizes of subsequent wavés=s,— s, 1, Where the size of the previous wasigwas considered
to be almost always an upper bound for the size of the next wave. Here we show that the significant
contribution toAs comes from waves that violate the bound; the averags(s,)) is actually negative and
diverges with the system size, contradicting the proposed soly§i263-651X97)50510-1

PACS numbd(s): 64.60.Lx

The sandpile was the first model introduced by Bak,system,s.,~L2, whereL is the linear extent of the system.
Tang, and Wiesenfeld to demonstrate the principle of selfin short, the physics is dominated by waves that are not
organized criticality{ 1]. Self-organized criticality describes a contained within their predecessors. Thus the argument lead-
general property of slowly driven dissipative systems withing to the claimed exact results is incorrect.
many degrees of freedom to evolve toward a stationary state The ASM consists of a square lattice of sizewith a
where activity takes place intermittently in terms of burstsdiscrete numbeg; of sand grains occupying each site. Ini-
spanning all scales up to the system size. The sandpile modgally, the lattice may be empty, and sand is dropped grain by
has subsequently received a great deal of attention due irain at random sites. After each drop, all sites that exceed a
part to its potential for having a theoretical solution. Dharcritical threshold for stabilityz,>z.=3, are “toppled” by
showed that certain aspects of its behavior could be calcwdistributing a single grain of sand to each of their four near-
lated exactly based on the Abelian symmetry of topplingsest neighbors or, for boundary sites, over the edge of the
For instance, rigorous results have been obtained for the tot#dttice. Toppling proceeds for a number of time steps until all
number of allowed configurations on the attractor of recur-ssites are stable again, and a new grain is dropped at a random
rent stateg2], for some height-height correlation functions site. Dropping sand represents an external driving force on
[3,4], and later for the distribution of sizes of the last wave inthe system whose impact is dissipated in intermittent se-
an avalanchd5], among other quantities. Nevertheless, aquences of toppling events, which are called avalanches. The
formal solution for the all important critical exponents de- number of toppling events following the addition of a single
scribing the distribution of avalanche sizes and durations igyrain is the sizeS of an avalanche. Starting from an empty
the Abelian sandpile mod€ASM) has remained an elusive lattice, avalanches are initially rare and only of short dura-
goal. tion. But the system fills up with sand to the point that many

In a recent Lettef6] exact results were proposed for the sites are close to threshold. Then, the system reaches a sta-
distribution of avalanche sizes in the ASM, based on a detionary state in which for any one grain dropped, on average,
composition of an avalanche into a sequence of “waves” ofone grain must leave the system through the open bound-
topplings. Specifically, the prediction was made that thearies. The grains are transported by avalanches that are now
asymptotic distribution of the number of topplings in an ava-broadly distributed in both duration and extent over many
lanche isP(S)~S™ " with 7=6/5, and the distribution of the orders of magnitude, only limited by the system’s size. Thus,
number of sites covered by an avalanchB{ga)~a~"awith  the system has self-organized into a critit€®DC state with
T,=5/4. The results of numerical simulations do not con-a highly correlated response to the external driving.
vincingly support these claims, although measuring the ac- This model has a few other remarkable properties, most
tual avalanche distribution exponents in this model is notonotably the fact that the order of toppling events during an
riously difficult. avalanche is interchangealléAbelian” ) without changing

Here we scrutinize the main assumption in the argumenthe final state of the system, which, for instance, allows an
leading to the predicted exact results in Réf.for the ASM.  exact enumeration of the critical std@. Also, it was found
Based on careful numerical simulations we show that thehat the domain spanned by a single avalanche is always
fundamental assumption that the next wave usually is coneompact, though with a fractal bounddr¥]. Manna[8] in-
tained by the previous wave fails drastically. In particular,troduced a different sandpile model, without Abelian sym-
the exponenta as defined in[6] does not exist, and the metry, where the toppling grains are stochastically distrib-
difference in sizes of subsequent wauks is more often uted to nearest neighbors so that the distribution is
negative than positive. In fact, the negative contribution hasymmetric only on average. For some time it was believed,
a sufficiently fat tail that the average differencs(s,)) is  based on real space renormalization group arguniéhtnd
negative and diverges with system size forgks,,. The = Manna’s numerical simulation results, that the ASM was in
quantity s., is the cutoff in waves sizes due to the finite sizethe same universality class as the Manna model. But for both
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FIG. 1. Plot of the distributiorP(s,, |sy) for the next wave to FIG. 2. Scaling collapse for the data in Fig. 1 according to Eqg.

be of sizes,, 1, given that the previous wave was of siggin a (1), giving F(x)~s§’flP(Sk+1|sk) as a function ofx=sy,/s.
system of sizeL=1024. Each graph contains data fof"2s, The tail for each graph falls approximately like *? (as the dashed
<2™1 for m=4,5, ... ,19from bottom to the top. To avoid over- line).

laps, the graphs are offset. It appears that for each valug of
P(Sk1|sy) initially falls like s, 2 (as the dashed line on thput
at a scale linear irg, crosses over to a,jf’l“ falloff (as the lower
dashed ling

wave, which separates sites that toppled in that wave from
sites that did not. Just inside the wave boundary a trough
relative to the previous heights appears, whereas just outside

models the values of the distribution exponents, obtained bj'¢ boundary a hill appears where sand was transport outside
various extrapolations of the results from extensive numeriof the wave. Thus the sequence of topplings in the next wave
cal simulations, have barely converged to within 10% aftetVill follow exactly the sequence of topplings in the previous
many years of study. Recently, Ben-Hur and Bihfbo)] wave.unul the wave first reaches th_e prior wave’s bou_ndary,
computed the geometrical scaling properties of avalanchedt which pomft the sequence may differ. Priezzhev, Ktitarev,
instead of individual avalanche distribution exponents. Thei@nd Ivashkevicli6] argued that generally subsequent waves
results indicate that the ASM and the Manna model mayareé spatially contained within the previous waves because of
belong to different universality classes. A survey of two-timeth€ trough at the boundary. Their analysis only considers
autocorrelation functions in various SOC modgld] also ~ Waves that are conta_lned within previous waves and they
reveals differences between both models: the ASM exhibits"eglect the overlapping of waves and deal only with the
“aging” [12] while the Manna model does nft1,13. decrease of wave sizefB]. Using spanning tree arguments
Effort has focused recently on understanding avalanch&gether with this assumption, they find that the size differ-
dynamics in the ASM by decomposing the avalanche into £nce between subsequent wayas) =s,— sy, is positive,
sequence of more elementary events. Dhar and M&Bha finite in the limit of large system size, and obeys a scaling
introduced the notion of inverse avalanches, which werdelationAs~s;’. Key to the argument leading to E@.2) in
shown to be equivalent to a direct representation of avaRef.[6] is the length of the boundaity of the previous wave
lanches in terms of waves of toppling evefifst]. Ivash- Sk, which is presumed to contain the subsequent veave.
kevich, Ktitarev, and Priezzhev defined waves as follows: ifHere we show that the main contribution A&s comes from
the site(i) to which a grain was added becomes unstablewaves that escape the boundary of their preceding wave, and
topple it once and then topple all other sites that becom@re bounded only by the system size. In fact, the average
unstable, keeping the initial sit&) from toppling a second (As(sy)) is negative and diverges to infinity as the system
time. The set of sites that toppled thus far are called “thesize increases.
first wave of topplings” since every site can only topple ~We have simulated about 1@vaves inL? systems up to
once. After the first wave is completed the diteis allowed L =1024. To ensure the accuracy of our numerical simula-
to topple the second time, not permitting it to topple againtions, we have reproduced a variety of previously obtained
until the “second wave of topplings” is finished. The pro- exact results for the distribution of waves. For instance, our
cess continues until the sit® becomes stable and the ava- data yield thes™ 8 power law that was derived by Dhar and
lanche stops. Manna[5] for the distribution of the very last wave in each
This elegant decomposition of avalanches into waves reavalanche. We also found thesliiehavior for the distribu-
veals many interesting features. First of all, the waves argion of all waves[14].
individually compact, and each site that topples in a wave To determineAs we recorded the distribution of subse-
topples exactly once in that wave. As a result, the state of thguent waves for a given size of the preceding wave
system after a wave is exactly the same as the state befoR{s,|Sx) as shown in Fig. 1. In Fig. 2 we show the data
the wave except at sites on the single closed boundary of theollapse where the horizontal axis is new s, 1 /S¢. There
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FIG. 3. Plot of(As)=s,—s,,1 as a function of the previous

wave s, obtained fromP(s,,|s,) (see Fig. 1 via Eq. (2) for
system size. =28, 2°, and 2° from top to bottom. Initially (As)
is negative and falling for increasirg Closer to the cutoff;, the

linearly rising term in Eq{(3) dominates. In each case, the graph
turns positive as,~L?/10. waves that contribute to a negatives, then we reproduce

(in Fig. 4) the plot given in Fig. 1 of Ref.6].
are two regimes separated by a turning point near one. There Furthermore, a more detailed analysis of subsequent

FIG. 4. Plot of(As) as a function of the previous wawe but
leaving out all data wher@s is negative. We chose=512 to
compare with Fig. 1 in Ref6].

is clear evidence of a fat power law tail fee>1, which will ~ waves thatare smaller, in terms of number of topplings
dominate the averaggs for each value of,. The data are than their predecessor reveals that in most cases the follow-
sufficiently well represented by a scaling form ing (smalley wave still, more often than not, exceeds the

confines of thglargen previous wave at some points on the
1) boundary. The smaller waves actually do escape the bound-

ary of their predecessor. As the system size grows, the frac-

tion of consecutive waves that violate the assumption of Ref.
where F(x—0)—1 andF(x>1)~x"". The data collapse [6] also grows.

_ Sk+1
P(Skr1/S0)~ S 4F ) ,

Sk

indicates tha3=3/4 andr=1/2. In summary, we have shown that the analysis in Re¥.
From Eq.(1), the computation ofAs(s,))=(sxk—Sk+1) is fundamentally flawed because it deals only with waves of
leads immediately to decreasing size, whereas the dominant contributior $o
< s comes from the “fat tails” in the distributi.orP(skHlsk)
<AS(Sk)>:Sk_SkJ co kdxxl—BF(X)’ ) where waves escape the boundary of their predecessor ex-
plicitly. Yet, our numerical data seems to indicate that a cer-

tain degree of regularity in the distribution of consecutive
waves exists, leading to what appears to be exact values for
B=3/4 andr =1/2. It may be possible that the spanning tree
arguments used in R€f6] can be generalized to include the
As(s)) =S, — Cs4st4 3 dominant contribution from overlapping waves. The appear-
(As(s)) =5 co =k ® ance of the apparently simple expone@sandr gives us

whereC is a positive number that depends on the details ofOMe hope that an exact solution using the elegant decom-
the functionF. It is important to note here thatAs) is position of avalanches into waves can be discovered.

negative for all § up to a scale B, and that it diverges with

the system siz®ur numerical measurement foks) shown Both of us gratefully acknowledge the hospitality of the

in Fig. 3 confirms the above analysis. Santa Fe Institute, where part of this work was completed,
If we (erroneously exclude from the data set all waves and S.T.B. thanks the Physics Department at the University

that are larger than their predecessor, i.e., eliminating thosef Houston for its hospitality.

wheres,, is the cutoff in wave sizes from the finite system
size; s,~L2 For sc<s, this gives (As(s))=sk
—Cs2, PP or, using our values fog andr,
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