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Avalanches and waves in the Abelian sandpile model
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We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of
waves of toppling events. Priezzhevet al. @Phys. Rev. Lett.76, 2093 ~1996!# have recently proposed exact
results for the critical exponents in this model based on the existence of a proposed scaling relation for the
difference in sizes of subsequent waves,Ds5sk2sk11 , where the size of the previous wavesk was considered
to be almost always an upper bound for the size of the next wavesk11 . Here we show that the significant
contribution toDs comes from waves that violate the bound; the average^Ds(sk)& is actually negative and
diverges with the system size, contradicting the proposed solution.@S1063-651X~97!50510-1#

PACS number~s!: 64.60.Lx
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The sandpile was the first model introduced by Ba
Tang, and Wiesenfeld to demonstrate the principle of s
organized criticality@1#. Self-organized criticality describes
general property of slowly driven dissipative systems w
many degrees of freedom to evolve toward a stationary s
where activity takes place intermittently in terms of bur
spanning all scales up to the system size. The sandpile m
has subsequently received a great deal of attention du
part to its potential for having a theoretical solution. Dh
showed that certain aspects of its behavior could be ca
lated exactly based on the Abelian symmetry of topplin
For instance, rigorous results have been obtained for the
number of allowed configurations on the attractor of rec
rent states@2#, for some height-height correlation function
@3,4#, and later for the distribution of sizes of the last wave
an avalanche@5#, among other quantities. Nevertheless,
formal solution for the all important critical exponents d
scribing the distribution of avalanche sizes and durations
the Abelian sandpile model~ASM! has remained an elusiv
goal.

In a recent Letter@6# exact results were proposed for th
distribution of avalanche sizes in the ASM, based on a
composition of an avalanche into a sequence of ‘‘waves’’
topplings. Specifically, the prediction was made that
asymptotic distribution of the number of topplings in an av
lanche isP(S);S2t with t56/5, and the distribution of the
number of sites covered by an avalanche isP(a);a2ta with
ta55/4. The results of numerical simulations do not co
vincingly support these claims, although measuring the
tual avalanche distribution exponents in this model is no
riously difficult.

Here we scrutinize the main assumption in the argum
leading to the predicted exact results in Ref.@6# for the ASM.
Based on careful numerical simulations we show that
fundamental assumption that the next wave usually is c
tained by the previous wave fails drastically. In particul
the exponenta as defined in@6# does not exist, and the
difference in sizes of subsequent wavesDs is more often
negative than positive. In fact, the negative contribution
a sufficiently fat tail that the average difference^Ds(sk)& is
negative and diverges with system size for allsk,sco. The
quantitysco is the cutoff in waves sizes due to the finite si
561063-651X/97/56~4!/3745~4!/$10.00
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system,sco;L2, whereL is the linear extent of the system
In short, the physics is dominated by waves that are
contained within their predecessors. Thus the argument le
ing to the claimed exact results is incorrect.

The ASM consists of a square lattice of sizeL with a
discrete numberzi of sand grains occupying each site. In
tially, the lattice may be empty, and sand is dropped grain
grain at random sites. After each drop, all sites that excee
critical threshold for stability,zi.zc53, are ‘‘toppled’’ by
distributing a single grain of sand to each of their four ne
est neighbors or, for boundary sites, over the edge of
lattice. Toppling proceeds for a number of time steps until
sites are stable again, and a new grain is dropped at a ran
site. Dropping sand represents an external driving force
the system whose impact is dissipated in intermittent
quences of toppling events, which are called avalanches.
number of toppling events following the addition of a sing
grain is the sizeS of an avalanche. Starting from an emp
lattice, avalanches are initially rare and only of short du
tion. But the system fills up with sand to the point that ma
sites are close to threshold. Then, the system reaches a
tionary state in which for any one grain dropped, on avera
one grain must leave the system through the open bou
aries. The grains are transported by avalanches that are
broadly distributed in both duration and extent over ma
orders of magnitude, only limited by the system’s size. Th
the system has self-organized into a critical~SOC! state with
a highly correlated response to the external driving.

This model has a few other remarkable properties, m
notably the fact that the order of toppling events during
avalanche is interchangeable~‘‘Abelian’’ ! without changing
the final state of the system, which, for instance, allows
exact enumeration of the critical state@2#. Also, it was found
that the domain spanned by a single avalanche is alw
compact, though with a fractal boundary@7#. Manna@8# in-
troduced a different sandpile model, without Abelian sy
metry, where the toppling grains are stochastically distr
uted to nearest neighbors so that the distribution
symmetric only on average. For some time it was believ
based on real space renormalization group arguments@9# and
Manna’s numerical simulation results, that the ASM was
the same universality class as the Manna model. But for b
R3745 © 1997 The American Physical Society
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models the values of the distribution exponents, obtained
various extrapolations of the results from extensive num
cal simulations, have barely converged to within 10% af
many years of study. Recently, Ben-Hur and Biham@10#
computed the geometrical scaling properties of avalanc
instead of individual avalanche distribution exponents. Th
results indicate that the ASM and the Manna model m
belong to different universality classes. A survey of two-tim
autocorrelation functions in various SOC models@11# also
reveals differences between both models: the ASM exhi
‘‘aging’’ @12# while the Manna model does not@11,13#.

Effort has focused recently on understanding avalan
dynamics in the ASM by decomposing the avalanche int
sequence of more elementary events. Dhar and Manna@5#
introduced the notion of inverse avalanches, which w
shown to be equivalent to a direct representation of a
lanches in terms of waves of toppling events@14#. Ivash-
kevich, Ktitarev, and Priezzhev defined waves as follows
the site~i! to which a grain was added becomes unstab
topple it once and then topple all other sites that beco
unstable, keeping the initial site~i! from toppling a second
time. The set of sites that toppled thus far are called ‘‘
first wave of topplings’’ since every site can only topp
once. After the first wave is completed the site~i! is allowed
to topple the second time, not permitting it to topple ag
until the ‘‘second wave of topplings’’ is finished. The pro
cess continues until the site~i! becomes stable and the av
lanche stops.

This elegant decomposition of avalanches into waves
veals many interesting features. First of all, the waves
individually compact, and each site that topples in a wa
topples exactly once in that wave. As a result, the state of
system after a wave is exactly the same as the state be
the wave except at sites on the single closed boundary o

FIG. 1. Plot of the distributionP(sk11usk) for the next wave to
be of sizesk11 , given that the previous wave was of sizesk in a
system of sizeL51024. Each graph contains data for 2m<sk

,2m11 for m54,5, . . . ,19from bottom to the top. To avoid over
laps, the graphs are offset. It appears that for each value ofsk ,
P(sk11usk) initially falls like sk11

23/4 ~as the dashed line on top!, but
at a scale linear insk crosses over to ask11

25/4 falloff ~as the lower
dashed line!.
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wave, which separates sites that toppled in that wave fr
sites that did not. Just inside the wave boundary a tro
relative to the previous heights appears, whereas just out
the boundary a hill appears where sand was transport ou
of the wave. Thus the sequence of topplings in the next w
will follow exactly the sequence of topplings in the previo
wave until the wave first reaches the prior wave’s bounda
at which point the sequence may differ. Priezzhev, Ktitar
and Ivashkevich@6# argued that generally subsequent wav
are spatially contained within the previous waves becaus
the trough at the boundary. Their analysis only consid
waves that are contained within previous waves and t
‘‘neglect the overlapping of waves and deal only with t
decrease of wave size’’@6#. Using spanning tree argumen
together with this assumption, they find that the size diff
ence between subsequent waves^Ds&5sk2sk11 is positive,
finite in the limit of large system size, and obeys a scal
relationDs;sk

a . Key to the argument leading to Eq.~12! in
Ref. @6# is the length of the boundaryG of the previous wave
sk , which is presumed to contain the subsequent wavesk11 .
Here we show that the main contribution toDs comes from
waves that escape the boundary of their preceding wave,
are bounded only by the system size. In fact, the aver
^Ds(sk)& is negative and diverges to infinity as the syste
size increases.

We have simulated about 107 waves inL2 systems up to
L51024. To ensure the accuracy of our numerical simu
tions, we have reproduced a variety of previously obtain
exact results for the distribution of waves. For instance,
data yield thes211/8 power law that was derived by Dhar an
Manna@5# for the distribution of the very last wave in eac
avalanche. We also found the 1/s behavior for the distribu-
tion of all waves@14#.

To determineDs we recorded the distribution of subse
quent waves for a given size of the preceding wa
P(sk11usk) as shown in Fig. 1. In Fig. 2 we show the da
collapse where the horizontal axis is nowx5sk11 /sk . There

FIG. 2. Scaling collapse for the data in Fig. 1 according to E
~1!, giving F(x);sk11

3/4 P(sk11usk) as a function ofx5sk11 /sk .
The tail for each graph falls approximately likex2 1/2 ~as the dashed
line!.
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are two regimes separated by a turning point near one. T
is clear evidence of a fat power law tail forx@1, which will
dominate the averageDs for each value ofsk . The data are
sufficiently well represented by a scaling form

P~sk11usk!;sk11
2b FS sk11

sk
D , ~1!

where F(x→0)→1 and F(x@1);x2r . The data collapse
indicates thatb.3/4 andr .1/2.

From Eq.~1!, the computation of̂ Ds(sk)&5^sk2sk11&
leads immediately to

^Ds~sk!&5sk2skEsco /sk
dxx12bF~x! , ~2!

wheresco is the cutoff in wave sizes from the finite syste
size; sco;L2. For sk!sco this gives ^Ds(sk)&5sk

2Csco
22b2rsk

b1r 21 or, using our values forb and r ,

^Ds~sk!&5sk2Csco
3/4sk

1/4, ~3!

whereC is a positive number that depends on the details
the function F. It is important to note here that̂Ds& is
negative for all sk up to a scale L2, and that it diverges with
the system size.Our numerical measurement for^Ds& shown
in Fig. 3 confirms the above analysis.

If we ~erroneously! exclude from the data set all wave
that are larger than their predecessor, i.e., eliminating th

FIG. 3. Plot of ^Ds&5sk2sk11 as a function of the previous
wave sk , obtained fromP(sk11usk) ~see Fig. 1! via Eq. ~2! for
system sizeL528, 29, and 210 from top to bottom. Initially,̂ Ds&
is negative and falling for increasings. Closer to the cutoffsco the
linearly rising term in Eq.~3! dominates. In each case, the gra
turns positive atsk'L2/10.
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waves that contribute to a negativeDs, then we reproduce
~in Fig. 4! the plot given in Fig. 1 of Ref.@6#.

Furthermore, a more detailed analysis of subsequ
waves thatare smaller, in terms of number of topplingss,
than their predecessor reveals that in most cases the fol
ing ~smaller! wave still, more often than not, exceeds t
confines of the~larger! previous wave at some points on th
boundary. The smaller waves actually do escape the bou
ary of their predecessor. As the system size grows, the f
tion of consecutive waves that violate the assumption of R
@6# also grows.

In summary, we have shown that the analysis in Ref.@6#
is fundamentally flawed because it deals only with waves
decreasing size, whereas the dominant contribution toDs
comes from the ‘‘fat tails’’ in the distributionP(sk11usk)
where waves escape the boundary of their predecesso
plicitly. Yet, our numerical data seems to indicate that a c
tain degree of regularity in the distribution of consecuti
waves exists, leading to what appears to be exact values
b53/4 andr 51/2. It may be possible that the spanning tr
arguments used in Ref.@6# can be generalized to include th
dominant contribution from overlapping waves. The appe
ance of the apparently simple exponentsb and r gives us
some hope that an exact solution using the elegant dec
position of avalanches into waves can be discovered.

Both of us gratefully acknowledge the hospitality of th
Santa Fe Institute, where part of this work was complet
and S.T.B. thanks the Physics Department at the Univer
of Houston for its hospitality.

FIG. 4. Plot of^Ds& as a function of the previous waves, but
leaving out all data whereDs is negative. We choseL5512 to
compare with Fig. 1 in Ref.@6#.
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